On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems
نویسندگان
چکیده
منابع مشابه
On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems
Given a combinatorial optimization problem with an arbitrary partition of the set of random objective coefficients, we evaluate the tightest possible bound on the expected optimal value for joint distributions consistent with the given multivariate marginals of the subsets in the partition. For univariate marginals, this bound was first proposed by Meilijson and Nadas (Journal of Applied Probab...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولThe Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes
The Maximum Independent Set problem in d-box graphs, i.e., in intersection graphs of axis-parallel rectangles in Rd, is known to be NP-hard for any fixed d ≥ 2. A challenging open problem is, how close the solution can be approximated by a polynomial time algorithm. For the restricted case of d-boxes with bounded aspect ratio a PTAS exists [12]. In general case no polynomial time algorithm with...
متن کاملLower Bounds for Combinatorial Problems on Graphs
Nontrivial lower bounds are given for the computation time of various combinatorial problems on graphs under a linear or algebraic decision tree model. An SI( n310g n) bound is obtained for a “travelling salesman problem” on a weighted complete graph of n vertices. Moreover it is shown that the same bound is valid for the “subgraph detection problem” with respect to property P if P is hereditar...
متن کاملEasy distributions for combinatorial optimization problems with probabilistic constraints
We show how we can linearize probabilistic linear constraints with binary variables when all coefficients are distributed according to either N (μi, λμi), for some λ > 0 and μi > 0, or Γ(ki, θ) for some θ > 0 and ki > 0. The constraint can also be linearized when the coefficients are independent and identically distributed if they are, besides, either positive or strictly stable random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 2012
ISSN: 0030-364X,1526-5463
DOI: 10.1287/opre.1110.1005